
V. IYER et al: DISTRIBUTED SOURCE CODING FOR SENSOR DATA MODEL 

IJSSST, Vol. 10, No. 1                                                      16                          ISSN:1473-804x online, 1473-8031 print 
  

 

 

Distributed Source Coding for Sensor Data Model  
 

 
Vasanth Iyer                          Sundaraja Sitharama Iyengar     Rama Murthy Garimalla             Srinivas Mandalika 

IIIT Hyderbad                        Louisiana State University                    IIIT Hyderabad                        IIIT Hyderabad 

A.P., India 500032  Baton Rouge, USA 7081  A.P., India 500032  A.P., India 500032 

vasanth@research.iiit.ac.in               iyengar@csc.lsu.edu                rammurthy@iiit.ac.in                srinivas@iiit.ac.in 
 

 
Abstract—We measure reliability in sensor networks which are dependent on limited resources of individual sensor nodes such has 
battery capacity, transmission range and channel interference due to simultaneous wireless transmissions. From the initial simulation 
it is estimated that the routing errors using a distributed algorithm for a large network is less susceptible to failures when compared 
to using a table driven routing algorithm. To further address other influencing factors which are not related to resource allocation or 
routing of the sensor network we study the correlated issues, which makes sensor network unique to the categories of wireless 
network applications. The simulation results show that due to 1-bit-mask accuracy and the CDF codes used to represent measured 
values in the decoder buffer is fault-tolerant and also increases the communication rate by 70% due to information redundancy 
within a sensor cluster.  
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I.mINTRODUCTION 
 
Sensor networks are deployed in a dense configuration due 

to its limited radio range and fixed non renewable energy 

resources due to computational/networking characteristics of 

sensor networks. To collaboratively use the limited resources 

distributed algorithms, select a single node which transmits 

serially using its UART pre-processed sensed data information 

using many local resources. As the cost of radio transmission 

is much more than local sensing, the sensor network uses two 

different topologies to address the energy cost at the cross- 

layer stack. The network layers uses the upper layers assuming 

MAC layer abstraction to optimally pick cluster heads by using a 

fixed probability density function (pdf) of a network resource at 

the node, such as, remaining battery energy. This type of pdf is 

power-aware as it uses a collaborative function to minimize 

over use of network resources thus avoiding pre-mature node 

failures.  

The MAC layer uses a k-neighborhood distance algorithm 

to find other nodes within its own limited range and uses a 

multi-hop schedule to the specific data transmitting node. This 

scheduling allows multi-hop nodes to use sleep cycles and 

lower their energy consumption while idling. These multi- hop 

algorithms use low-power listening and use a preamble to 

wake up nodes, sleep cycles when the transmitter is completely 

off and traffic based preamble to synchronize nodes to receive 

the data payload.  

If 1, 2, 3 are the data values of a parameter such as residual 

energy, observed values by the sensors, as large scale sensor 

deployment are a dense deployment as the reading are 

correlated only an average 1 needs to be transmitted. As the 

clustering is based on the network layer which optimizes on 

radio range and not the sensing region it always is 

approximated and corrected using some training samples 

using less number of bits to be transmitted, this is the 

fundamental design based on power-aware data model.  

In the MAC layer which polls the channel to check for any 

activity while receiving and during transmitting to avoid 

collision and uses best effort QoS for the messages to be 

forwarded. The data sensing nodes are single hop, while 

forwarding nodes are multi-hop nodes.  

 

 

  The data values which are forwarded are discrete and 

updated according to some trend in the data. Some measured 

values may be changing more quickly than others creating 

different traffic patterns that are data driven. The multi-hop 

nodes do not have any sensors and act like routers which uses 

best effort QoS and constantly adapts its polling depending on 

the data trend, this is fundamental to the design of polling the 

channel, which uses on-demand traffic predictions. Model 

implementation assumes 1, 2, 3 are always transmitted when 

changes happen and typically it is re-transmitted at a constant 

rate of 10 minute intervals keeping the channel polling of a set 

of nodes to guarantee the QoS. Figures 1(a,b) illustrates the 

Bayesian classifier for pdf based clustering and multi-hop 

based passive clustering. For the theoretical and mathematical 

proofs please refer to chapter 2,4 in the mentioned reference 

[7].  

     This paper builds from previous work [1,2] and extends the 

two dimensional Bayesian model [7] to optimize on power-

aware routing algorithms in representing sensor network. The 

routing algorithms are implemented at the network layer 

which have known density of nodes by using prior selection 

and at MAC layer which have unknown node densities due to 

limited transmission range. The Bayesian classifiers [7] which 

are specific to the routing topology uses features to maximize 

the lifetime of the sensor network and minimize on sensor 

faults. This Bayesian classifier helps in predicting the 

theoretical fault rate bounds by knowing the node densities 

validated also through real simulation.  

In section II, the sensor data model is described with respect 

to sampling and compression needs at the cluster heads. In 

section III, the Source coding rate is introduced for correlated 

sources using error corrected codes. In section IV, the 

scalability of the sensor network is modeled using Power Law 

and Bayseian Classifier and how it effects distributed 

clustering and passive clustering routing. In Section V, a 

distributed algorithm is simulated without MAC to find error 

bounds for a large-scale deployment. Section VI, uses battery 

model at the physical layer, which uses the cross-layer energy 
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(a) Persistence clustering when CH probabilities are known a priori (b) Passive clustering when CH probabilities are unknown (c) Error Bounds

Fig. 1. Estimation of CH selection error and MAC layer routing using Bayesian distributed rule

model with a standard simulator using crossbow mote energy
model to analyze lifetime for various routing. Section VII uses
fault recognition pre-processing using huffman probability
trees and measures the bit rate errors in the networks. Section
VIII uses probabilistic algorithms to calculate a local variance,
which helps in determining the transmission success rate.

II. DATA MODELS

A. Probability model

Where d is the distance to transmit between sensors i to
sensor j. We designed the compression algorithm for a large
distributed sensor network with a desired channel rate, a fixed
length code to represent real sensed values at the encoder using
(c,k,d), Where c is the code, k is the length and d is the
distance from the average PMax cluster heads. This technique
which allow using less number of bits to represent the newly
encoded data is sent to the decoder by sharing the expected
local value at both ends.

As a rule, compression algorithms use a probability model
based on the entropy of the source. Iyengar [3] defined a
Bayesian fault-tolerant algorithm in sensor network using an
abstract sensor which can be tamely faulty and widely faulty.
For larger sensor network deployment, this model helps predict
the error bounds in terms of the varying sensing values. In this
paper we adapt the Bayesian rule [7] to select cluster heads
for known node density and extend it to find the upper bounds
related to unknown densities for solving the optimal routing
problem at the network layer in sensor networks. The latter
is more relevant for renewable energy resources [4]. Where
the number of active sensors connected to the network is not
known, at any given time.

Entropy of general sensing source is a sequence of length
n from the source and is given by

H(S) = lim
n→∞

1

n
Gn, where (2.1)

Gn = −
∑∑

...
∑

P (X1 = i1, X2 = i2...Xn = in)

logP (X1 = i1, X2 = i2...Xn = in)

In sensors where each element in the sequence is independent
and identically distributed (i.i.d.), with this statistical model,
we can modify the entropy of the first order to equation (2.1)

H(S) = −
∑

P (X1) logP (X1) (2.2)

B. Aggregation model

If the cluster size in n, given this density of clustering,
the entropy of data aggregation[8,9] from equation 2.2. In a
lossless mode if there are no faults in the sensor network,
we can show that the highest probability given by PMax

is ambiguous if its frequency is ≤ n
2 otherwise it can be

determined by a local function.

C. Local Pmax functions

Provides a way to determine the local filter value from the
probability distribution used by compression algorithms.

|Pmax| =
{

local, for Pmax ≥ n
2 (2.3a)

global, for Pmax < n
2 (2.3b)

D. Slepian & Wolf theorem

The Slepian-Wolf rate [11] region for two arbitrarily corre-
lated sources x and y is bounded by the following inequalities,
this theorem can be adapted using equation (2.2)

Rx ≥ H

(
x

y

)
, Ry ≥ H

(y
x

)
and Rx +Ry ≥ H (x, y)

(2.4)
If the correlated sources are differing by a few bits, the
possible number of codewords can be represented as 2m where
m= no. faulty bits [10]. In our case m=2 as the parameters are
distributed whilst collected locally at the cluster head.

III. COMPRESSION RATE

A. Distributed source coding with side information

In sensors networks several measured values are sensed in
a distributed manner and these are aggregated according to
the users query. The goal of all the encoder is analogous to
the previous section where it uses cosets. Equations (3.1-3.4)
illustrates the bin formation to reduce the overall bits needed
for transmission. Considering the case of distributed sensing
application, the encoder is further designed with a machine
learnable redundancy range which is specific to each and
every application. This mutually redundant measured range
is correlated with sensors which are in the same wireless
range and connected to a parent. This information, also called
side information is shared with the decoder. Owing to side
information, even lesser number of bits are needed to rep-
resent the changing values coming from each cluster heads
transmitting to the joint decoder. Encoder and decoder have
access to the side information Y. which is correlated to X
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(a) Distributed sensor networks were ω1 = ω2 (b) Passive Clustering were ω1 ̸= ω2

Fig. 2. (a) Distributed sensor networks with LEACH single-hop nodes (b) Passive clustering algorithms with multi-hop nodes

and can be represented by the equation 2.3(a,b). According
to the Slepian-Wolf Theorem [11], established in 1971, that
the number of bits needed by using the theorem is lesser, as
shown in figure 4(b), than the total entropy for both the two
arbitrarily correlated sources H(x), H(y).

1 1 1
0 0 0 = 00 (3.1)

0 1 0
1 0 1 = 10 (3.2)

0 0 1
1 1 0 = 01 (3.3)

0 1 1
1 0 0 = 11 (3.4)

IV. FAULT RATE
Large deployment of sensor network that use an efficient

distributed algorithm to select cluster heads which allows to
extend the lifetime [5] to function without faults. The fault
rate of such an algorithm can be defined as the residual
percentage of good sensor when the network incurs faults due
to resource drain. This is typically referred to as the sensor
networks residual energy, if the fault rate is higher the cluster
head selection algorithm is less optimal. The two dimensional
simulation model is expressed in figure 2 for distributed and
passive cluster based routing. In the paper the fault rate is
measured for both the cases for algorithm complexity, multi-
hop dependency, MAC layer losses and Bit error rates.

A. Estimate of the sensed value for known densities
Theorem IV.1 A power law is any polynomial relationship
that exhibits the property of scale invariance. The most com-
mon power laws relate two variables and have the form.
PowerLaw = f(x) = ax2 + o(x)2

Proof: The function f(x) is represented as function of
transmission distance from the cluster heads to a sink location,

f(d), where d is the distance to transmit between sensors i to
a multihop sensor j towards the sink in increasing distance,
from this we get the Power rule [5] based on the distance
d of nearest sensor to the farthest away sensor, substituting
in the above theorem IV.1 and summing up the total energy
required for all transmissions within one meter, two meters,
three meters, four meters and extending up to (d− 1) meters
to a progressive sequence in equation (4.1).

PowerLaw = 12 + 22 + 32 + 42 + ...+ (d− 1)2 + d2 (4.1)

To sum up the total energy consumption we can write it in the
form of Power Law equation (4.1.1)

PowerLaw = f(x) = ax2 + o(x)2 (4.1.1)

Substituting d-distance for x and k number of bits transmitted,
we equate as in equation (4.1.1).

PowerLaw = f(d) = kd2 + o(d)2 (4.1.2)

o(d)2 is an asymptotically small function of d, Taking Log
both sides of equation (4.1.2),

log(f(d)) = 2 log d+ log k (4.1.3)

Notice that the expression in equation (4.1.2) has the form
of a linear relationship with slope k, and scaling the argument
induces a linear shift of the function, and leaves both the form
and slope k unchanged. Plotting to the log scale.

Corollary IV.2 Properties of power laws - Scale invariance:
The main property of power laws that makes them interesting
is their scale invariance. Given a relation f(x) = axk or,
indeed any homogeneous polynomial, scaling the argument x
by a constant factor causes only a proportionate scaling of
the function itself. From the equation (4.2.1) we can infer that
the property is scale invariant even with clustering c nodes in
a given radius k.
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Randomized CH Selection Scheme
Generate a random number x ∈ (0,%CHs)

Calculate gi(x) = P (ωi∥x) = p(x∥ωi)P (ωi)∑
p(x∥ωj)P (ωj)

if x = rand(x)

if x ≤ %thenCHi = x, elseCHi = false
Threshold CH Selection Scheme

Obtain the sensors residual energy Sj for all Ni neighbors of node i
Calculate if θ ≤ Sj

gi(x) = P (ωi∥x) = p(x∥ωi)P (ωi)∑
p(x∥ωj)P (ωj)

if x ≤ θ

ifx ≥ θ then CHi = x, elseCHi = false
Optimal Zone based caching Scheme
Divide the sensors into three zones

Use the middle zone as CHs caching
Calculate gi(x) = P (ωi∥x) = p(x∥ωi)P (ωi)∑

p(x∥ωj)P (ωj)
if x = Constant

Use optimal settings from the above two cases for % of CHs with use count
(a)

Fig. 3. Cluster head selection for power-aware routing in large sensor networks

Proof:
f(d) = kd2 + o(d2) (4.2)

f(cd) = k(cd2) = ckf(d)αf(d) (4.2.1)

From the equation (4.2.1) we can infer that the property is
scale invariant even with clustering c nodes in a given radius
k. This is validated from the simulation results [6] obtained
in Fig 4 (a) which show optimal results(minimum loading per
node[6]) when clustering is ≤ 20% as expected in theorem
1.

Theorem IV.3 Theorem 3. CH Error Rate - Local: If
two classes have the same covariance, where p(x|wj) ≈
N(µ,Σ), j = 1, 2.

If prior probabilities are equal and the event are independent
across clusters, the Bayes model minimizes according to the
input distribution and the error rate is given by

P (e) =
1√
[2π]

∫ ∞

r/2

e−u2/2du (4.3.1)

Proof: The simulated algorithms such LEACH use the
knowledge that the nodes which are sensing are correlated and
have known densities such as cluster size and radio range. The
sensed values are i.i.d distributed and their variance ̸= 0. The
underlying model can use the error rate for a cluster as 1

N and
estimated value θ which is random value of the nodes residual
power in this model and is defined by

r2 =

∫ d

i=1

(
µ− µ

σi

)2

(4.3.2)

where r2 is the radio range between nodes calculated by using
Mahalanobis distance [7].

P = P ∗ (4.3.3)

Which is the classifiers error bounds and is the lower bound
Bayesian estimate.

Theorem IV.4 Theorem 4. Multi-hop Error rate - Global:
When P (ωm|x) is close to unity, the nearest-neighbor selec-
tion is almost always the same as Bayes selection. This is,
when the minimum probability of error is small close to 1/c,
so that all classes are essentially equally likely, the selection
made by the nearest-neighbor rule and the Bayes rule are
rarely the same, but the probability of error is approximately
1− 1/c for both and is bounded by.

P ≤ 2P ∗ (4.4)

Proof: We recall that the Bayes decision rule minimizes
P (e) by minimizing P (e∥x) for every x. If P ∗(e∥x) be the
minimum possible value of P (e∥x), and P ∗ be the minimum
possible value of P (e), as the probability of an event is
conditional across neighbors is can be represented as P 2. The
error probability is given by

P ∗(e) = 1−
∑
i=1

P 2(ωi|x) (4.4.1)

and from the previous theorem convergence of the Nearest
Neighbor(k), then the error rate is 1

k . The reusable probability
at the CH for passive(local) clustering compared to distributed
clustering is 1

k > 1
N ≤ 1

P ∗(e) ≈ 2(1− P (ωi|x)) (4.4.2)

P ≤ 2P ∗ (4.4.3)

Equation 4.3.3 and 4.4.3 differentiates the error rate in terms
of residual energy index(rei).

V. ANALYSIS OF FAULT RATE CH-ALGORITHMS

A. Estimate of the sensed value for known densities

The simulated routing algorithms such LEACH-S [8],
LEACH-E [6] and CRF [6] as described in the above table use
the knowledge that the nodes which are sensing are correlated
and have known densities such as cluster size and radio range.
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(a) Fault rate for LEACH lifetime (b) Sensor data fault-redundancy (c) LT Data faults with protocol communications (d) LT Data faults with MAC losses

Fig. 4. Simulation results of fault analysis of WSN routing and data aggregation algorithms

The sensed values are i.i.d distributed and their variance ̸= 0.
The underlying model uses different ways to select the

cluster heads to minimize the error rate. When the sensor
faults happen due to fixed energy resources at the cluster
head the total energy unused at the end of its lifetime is the
residual rate[2], the routing algorithms tries to minimize this
error criteria. As this model uses the network layer as shown
in figure (2a) and the only dependant variable is the fixed
lifetime model [5].

The complexity of the algorithm can be defined by using the
standard implementation of the LEACH distributed algorithm
and its power-aware variations, see table (figure 3).

⃝g(x) = f(x) : 0 ≤ f(x) ≤ cg(x) (5.1)

Ωg(x) = f(x) : 0 ≤ cg(x) ≤ f(x) (5.2)

Θg(x) = f(x) : 0 ≤ c1g(x) ≤ f(x) ≤ c2g(x) (5.3)

Complexity of the routing algorithms for LEACH is shown
in equation (5.1), LEACH-E equation (5.2) and CRF equation
(5.3). In the next section we will use only the lower layer
such as power-ware MAC and estimate the multi-hop routing
errors. In this case the model is not dependant on the fixed
energy resources and only dependant on k-neighborhood rule
it uses to find its multi-hop nodes as shown in figure (2b).

As the node probability are not known a priori the error
rates are much higher than the persistence clustering.

VI. SIMULATION

A. Results from the network layer

Simulation models large number of nodes and calculates
the lifetime when sensor faults are more likely to happen,
the table shows(see Table I) number of cluster heads and the
fault rate for distributed clustering and passive clustering in
figure 4. Simulation results confirms the fault rate is network
size invariant and converges to the optimal values derived in
theorem 1 and 2.

B. Results from the MAC layer

When node densities are not know in advance due to node
failures or unscheduled polling and other characteristics of
sensor due to its dependence in fixed resources. The problem
due to this is for data transmitting nodes needs to find a near

TABLE I
SUMMARY OF NOTATIONS FOR ANALYSIS OF ROUTING FAULT-RATE

Symbols Definition
N Total number of deployed nodes
n Number of nodes in the cluster
µ Density of the class

PMAX Bayesian class rule
Rx,Ry Entropy of correlated sources

R,r Radio Range
P K-neighborhood fault probability
P* Bayesian probability
ω Bayesian classes
S Data source node
D Destination node
θ Nodes residual energy

CH Cluster head
P (ωi∥x) Conditional probability
P (x∥ωi) Class conditional probability

neighbor in a deterministic way by which it can build a passive
cluster to multi-hop its data. This uses minimal clustering over-
head as it does not use the upper layers during communication
synchronization. The behavior of the k-Nearest-Neighbor rule
[7] will be directed by in our simulation a two-dimensional
node distribution of n ≥ 100 where node density has one
or less neighbors. The unconditional average probability of
error occurring will be found over all nodes positioned at
coordinates specified by x:

P ∗(e) =

∫
P (e|x)p(x)dx (6.1)

The convergence of the nearest neighbor for distributed clus-
tering and passive clustering are derived, the distributed clus-
tering case is

P = P ∗ (6.2)

For passive clustering is given by

P = 2P ∗ (6.3)

As shown in figure 2(a) where lower bound for LEACH-S
when it becomes faulty and the remaining residual energy
using the cross-layer simulator is P(e)=0.27% which is the
fault rate.

C. Results from the MAC layer using a propagation model

In the case of passive clustering when node density p=0.1
or using the k-neighborhood rule as shown in 2(b) the node
densities are unknown in this case due to high likely-hood of
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LEACH 0.27% 0.41% 2m where m=2 faulty bits SPEED-CSMA 0.3% 0.1% BER/radio
Fixed Energy ω ≤ 20% P = 2P∗ Optimal config, Theorem 1,2 SPEED-BMAC 0.1% 0.1% BER/radio

Node failures(renewable lifetime) x P ≤ 2P∗ Errors due to unbalanced nodes Renewable Energy Model x P ≥ 2P∗ Theorem 3,4
Channel Error Model P = P∗ P ≥ 2P∗ Theorem 3,4

Fig. 5. Simulation test-bed for power-aware lifetime models

faults. The protocol simulation results are show in table (figure
5) that the upper bound has error rate of P(e)=0.41% which
converges to the proof derived in theorem 3 and theorem 4 and
the upper bound in figure 1(c), chapter 4 on non parametric
techniques [7].

In the previous case MAC abstraction is used which does
not take into account the propagation losses and protocol
retries at the MAC level. To simulate the wireless channel
we use GlomoSIM [4] bit error rate(BER) simulator and
implement the routing algorithms for multi-hop cases. The
routing algorithm implemented is SPEED which as shown in
table (figure 5) is a geographic routing algorithm which uses
two dimensional coordinate space to calculate the path from
the node coordinates.

Many runs into the protocol simulation suggest that the
radio characterization for CSMA [4] and B-MAC are com-
parable, figure 4(c) when the node densities are known.

The radio characterization for CSMA [4] is prone to faults
when compared to B-MAC, figure 4(d) when using in multi-
hop modes where the node densities are unknown. The proto-
col performance results show that the data packets received
during useful lifetime is 3X times better in B-MAC when
compared to CSMA and error rates are P ≥ 2P ∗ higher than
the theoretical Bayesian limit [7] of P = 2P ∗ as derived in
theorem 3 and theorem 4.

VII. FAULT RECOGNITION

Without loss of generality, we will assume a bitwise mask
model of the data in which a particularly large value is con-
sidered unusual(MSB), while the normal reading is typically
a low value. If we allow for faulty sensors, sometimes such
an unusual reading could be the result of a sensor fault, rather
than an indication of the event. We assume environments in
which event readings are typically spread out geographically
over multiple contiguous sensors. In such a scenario, we can
disambiguate faults from events by examining the correlation
in the reading of nearby sensors.

Let the real situation at the sensor node be modeled by a
binary variable Ti. This variable Ti = 0 if the ground truth is
that the node is a normal region and Ti = 1 if the ground truth
is that the node is in an event region. We map the real output
of the sensor into its binary bit-pattern, an abstract pattern
variable Pi. This variable Pi = 0 if the sensor measurement

indicates a change from the previous bit-pattern value and
Pi = 1 if it measures an unusual value.

There are thus four possible scenarios: Pi = MSB change;
Mi = 0 (sensor correctly reports a normal reading), Pi =
IN-RANGE; Mi = COSETS CODEBOOK (when only 1 bit
changes are reported by sensor reading), Pi = IN-RANGE;
Mi = HUFFMAN CODEBOOK (sensor correctly reports an
unusual/event reading with majority reporting), and Pi = LSB;
Mi = 0 (sensor reports very low readings). While each node
is aware of the value of Mi, in the presence of a significant
probability of a faulty reading, it can happen that Mi ̸= Ti. We
describe below a fault recognition algorithm to determine an
estimate Ri of the true reading Mi after obtaining information
about the sensor readings of neighboring sensors.

In our discussions, we will make one simplifying as-
sumption: the sensor data is a geometrically distributed due
to aggregating sensors which are placed in wireless range.
Normal entropy is given for a random variable X , with n,
outcomes xi : i = 1, ..., n, the Shannon entropy[12,13,14], a
measure of uncertainty and denoted by H(X), is defined as

H(X) = −
∑

p(xi)logbp(xi) (7.1)

where p(xi), is the probability mass function of outcome xi,
which is the average entropy.

One of a family of functionals for quantifying the diversity,
uncertainty or randomness of a system. It is named after Alfrd
Rnyi[12,13,14]. The Rnyi entropy of order α, where α ≥ 0,
is defined as

Hα(X) =
1

1− α
log

(
n∑

i=1

pαi

)
For any compression algorithm which assigns prefix codes and
to uniquely be decodable. Let us define the kraft Number and
is a measure of the size of L. We see that if L is 1, 2−L is
.5. We know that we cannot have more than two L’s of .5.

If there are more that two L’s of .5, then K > 1. Similarly,
we know L can be as large as we want. Thus, 2−L can be as
small as we want, so K can be as small as we want.

Thus we can intuitively see that there must be a strict upper
bound on K, and no lower bound. It turns out that a prefix-code
only exists for the codes IF AND ONLY IF:

K ≤ 1 (7.2)
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Fig. 6. (a) A graphical plot of the Slepian-Wolf rate (b) Huffman tree for small & medium (c) Faulty & corrected values (d) Success rate of Tx

The above equation is the Kraft inequality.

The sensor communication channel has a window of oppor-
tunity with a total duration (in bits) distributed geometrically
with parameter a. The probability of successful transmission
is given by probability mass function and lower-bound from
equation 7.2 0 < a < 1, find a code minimizing

log
∑
iϵχ

p(i)al(i) (7.3)

Psuccess = aLa(p,l) (7.4)

From the above equation 7.4 which are used by compression
algorithm to assign the prefix code optimally the quantitative
sensor data optimization is due to a the geometrically distri-
bution of values over time in P the probability[12,13,14] of
success. The huffman algorithm[12,13,14] combines the prob-
ability of the two least occurring values, here we will allow
this step only if the probabilities differ and is < 2p(n− 1).

HUFFMAN ALGORITHM: Modified priority Q for
merging probability

1: while !EndofPriorityQ do
2: Select new item from Q
3: if p(n) < 2p(n− 1) then
4: Merge Q = P (n) + P (n− 1)
5: else
6: Skip(n) Q
7: end if
8: end while

VIII. ANALYSIS OF FAULT RECOGNITION
ALGORITHMS

In order to simplify the analysis of the bitwise fault recog-
nition mechanisms, we will make the assumption that, the
network deployment can be categorized into low, medium
and high densities. In the simple case compression algorithms
cannot be able to use the measured statistics as there are few
samples. A typical scenario is shown in figure 6(b). Typically
the huffman trees have few levels and can easily distinguish the
correct measured value. As the density of the sensors increases
the level of correlation and at the same time effecting the
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range of measured values. As shown in figure 6(c) it has many 

levels and also many sensors typically have lower values or 

probabilities. For any compression algorithm there exist two 

components the encoder and the decoder. As discussed earlier 

in sensor networks due to high redundancy in measured data 

due to correlation. If the decoder reliably gets a reference 

value then the encoder needs to send only the difference or the 

change is bits, which reduces the number of bits needed to 

transmit. This is governed by Slepian-Wolf rate for the two 

correlated sources shown in figure 6(a). We further study the 

geometrically distributed property of sensors and how it factors 

into Huffman compression algorithm. We define a parameter 

a which is used in defining the codebook of the generated 

prefix code and also bounded by Kraft inequality defined in 

terms of individual code lengths. The success of transmission 

can be further calculated as shown plotted in Figure 6(d) by 

using the equation For a minimum pre-fix code a = 0.5 as 

     for a unique decidability 

 

A. Iteration  a=.5  

In order to extend this scenario to distributed source coding, 

we consider the case of separate encoders for each source, xn 

and yn. Each encoder operates without access to the other 

source. This scenario is illustrated in Figure 6. Using the 

techniques of fault recognition in this section, we would expect 

that each source could only be compressed to its marginal 

entropy. The anticipated efficiency of the algorithm is as 

follows in table II. 

 

TABLE II  

ALGORITHMS 

 

No Algorithm Compression  

Rate  

Error 

Rate  

 

Code  

Book  

1 Slepian-

Wolf 
50%  

 

Correctable  

Cosets  

Decoder  

dependent  
 

2 Huffman 70% Single-bit 

(pre-fix) 

Dic. 

based 

 

B. Iteration a   0.5   1.0  

As in the previous case it uses correlated values as a 

dependency and constructs the codebook. The compression 

rate or efficiency is further enhanced by increasing the 

correlated cdf(as shown in the algorithm) higher than a > 0.5. 

This produces very efficient codebook and the design is 

independent of any decoder reference information. Due to this 

a success threshold is also predictable, if a = 0.5 and the cost 

between L = 1.0 and 2.0 the success = 50% and for a = 0.9 

and L = 1.1, the success = 71%. The efficiency of the 

algorithm is more adaptable and summarized in table II .  
 

I X.  CONCLUSION  
 

In this paper we look into pre-processing of sensor data 

streams to detect any outliers, which can generate false 

alarms.  The local processing is done at the encoder, which 

has correlated information about the sensor data, which helps 

in reducing redundant transmission.  The encoding algorithm 

uses a coefficient, which is independent of the measured value 

but consistent with amount of redundancy in the data. This 

coefficient is learnt overtime and the sensors are allowed to 

calibrate by the assumption that the variations in data would 

be around the learnt correlated coefficient.. The simulation 

shows that efficiency for a sensor network is high due to 

correlated sources as shown in algorithm1. Algorithm2 uses 

standard Huffman code by adding a success rate probability, 

which helps to reduce energy and the code length over 

successive transmissions. 
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